Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2

Size: px
Start display at page:

Download "Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2"

Transcription

1 STA 248 H1S MIDTERM TEST February 26, 2008 SURNAME: SOLUTIONS GIVEN NAME: STUDENT NUMBER: INSTRUCTIONS: Time: 1 hour and 50 minutes Aids allowed: calculator Tables of the standard normal, t and chi-square distributions are on the last 3 pages (pages 10, 11, 12). Total points: 50 Some Assorted Formulae If X Bin(n, p), E(X) = np and Var(X) = np(1 p). Some confidence intervals: x ± z α/2 σ n s x ± t n 1;α/2 n ˆp(1 ˆp) ˆp ± z α/2 n ( (n 1)s 2 (n 1)s 2 ) χ 2, n 1;α/2 χ 2 n 1;1 α/2 1 2abcd 2ef 2g

2 1. A performance analyst measures the sizes of messages sent on two different computer networks (network A and network B). We are interested in comparing the distribution of message size between the two networks. Below are boxplots and empirical distribution functions for the message sizes for each network. The corresponding network is labelled for the empirical distribution functions but not for the boxplots. ECDF for network A ECDF for network B Fn(x) Fn(x) x x 1 2 (a) (1 mark) Indicate on the empirical cumulative distribution function for network A how to estimate the first quartile of message size for this network. First quartile is the value on the horizontal axis that corresponds to 0.25 on the vertical axis. (b) (2 marks) Which boxplot corresponds to which network? How do you know? The first boxplot is for network A. The quartiles from the e.c.d.f. are further apart in the plot for network B. (c) (2 marks) For each of the following indicate whether the statistic will be approximately equal or not for the two networks. If it is not approximately equal, indicate for which network it will be larger: i. the mean approximately equal ii. the standard deviation greater for network B 2

3 2. This question involves the Poisson distribution. Here are some facts about it. Let X be a random variable with a Poisson distribution with parameter µ. X has probability mass function p(x) = e µ µ x for x = 0, 1, 2,... x! and E(X) = µ and Var(X) = µ. Suppose X 1,..., X n are independent and identically distributed random variables Poisson random variables with parameter µ. Then Y = n i=1 X i has a Poisson distribution with parameter nµ. Let X = 1 n ni=1 X i. (a) (1 mark) What is E(X)? µ (b) (1 mark) What is Var(X)? µ n (c) (4 marks) Show that the maximum likelihood estimator of µ is X. For observed data x 1,..., x n the likelihood function is e nµ µ xi xi! The log-likelihood function is Differentiate with respect to µ Setting this equal to 0 gives So the maximum likelihood estimator is X. L(µ) = nµ + x i log(µ) + log(x i ) L µ = n + xi µ ˆµ = x (d) (1 mark) Is your estimator in part (c) unbiased? Why or why not? Yes from the answer to part (a). 3

4 n i=1 (X i X) 2 (Question 2 continued.) (e) (2 marks) Let S 2 = n 1. Is S 2 an unbiased estimator of µ? Justify your answer. You may assume that any results derived in lecture are known. Yes. µ. From lecture, S 2 is an unbiased estimator of the variance and the variance is (f) (4 marks) For S 2 as defined in part (e), Var(S 2 ) = µ (2µn + n 1) n(n 1) Do you prefer the estimator of µ from part (c) or part (e)? Consider at least 3 criteria. Both are unbiased from parts (d) and (e). Both are consistent by the Law of Large Numbers. Consider variance: Var(S 2 ) = µ n So X has smaller variance. So prefer X. ( 2µn n ) > µ since the quantity in brackets is greater than 1 n = Var(X) 4

5 (Question 2 continued.) (g) Below are 2 histograms for randomly generated Poisson random variables. For the first µ = 2 and for the second µ = 200. Poisson observations with mu=2 Poisson observations with mu=200 Frequency Frequency rpois(1000, 2) rpois(1000, 200) i. (2 marks) Describe the shapes of the histograms relative to each other. For µ = 2, the distribution is right-skewed. For µ = 200, the distribution is much more symmetric. ii. (2 marks) What principle is illustrated by the 2 histograms above for the 2 different values of µ? Explain. The Central Limit Theorem. Each observation from the Poisson distribution with µ = 200 can be considered as the sum of 100 observations from the Poisson distribution with µ = 2 and sums of random variables are approximately normally distributed by the CLT. 5

6 3. Consider the probability distribution with density function f(x) = θx θ 1 for 0 < x < 1 and 0 otherwise. θ The mean for a random variable with this distribution is θ+1 and variance is θ (θ+1) 2 (θ+2). Suppose we have a random sample of size n from this distribution. (a) (2 marks) Find the method of moments estimator of θ. Equate moments: gives X = ˆθ = ˆθ ˆθ + 1 X 1 X (b) (4 marks) Describe how you would use the bootstrap to estimate the standard error of the estimator in part (a). For observed data x 1,..., x n draw B samples of size n either by x - estimating θ as 1 x and sample from the above density using this estimate for θ (parametric bootstrap) or - sample with replacement from x 1,..., x n (non-parametric bootstrap). For each sample, calculate ˆθ i (i = 1,..., B) using the formula in (a). The bootstrap estimate of the standard error is the standard deviation of these B estimates of θ. 6

7 4. The summary statistics in the R output below are calculated from salaries obtained from a random sample of 65 computer programmers. > length(salaries) [1] 65 > summary(salaries) Min. 1st Qu. Median Mean 3rd Qu. Max > sd(salaries) [1] (a) (3 marks) Assuming that the salaries are normally distributed, find a 90% confidence interval for the mean salary. t.05,64 = ( ) Confidence interval: ± (b) (3 marks) Assuming that the salaries are normally distributed, find a 95% confidence interval for the variance. χ ,64 = χ 2.975,30 = 16.8,. χ2.025,64 = χ 2 (.025,30 ) = 47.0 Confidence interval: 64(25382) , 64(25382) (c) (3 marks) Based on the summary statistics, what can you say about the shape of the distribution of salaries? How does this affect the accuracy of your answers to parts (a) and (b)? Explain fully. The distribution is right-skewed rather than symmetric like a normal distribution. We can tell this because the mean is greater than the median (and also (maximum - median) > (median - minimum) and (3rd quartile - median) > (median - 1st quartile)). The confidence interval in part (a) is still approximately accurate since confidence intervals for the mean are robust against non-normality but the confidence interval in (b) is not accurate as it relies on having normally distributed data. 7

8 5. Suppose that a factory produces bottles of apple juice. Assume that the volumes of juice in the bottles can be considered independent and identically distributed random observations from a Normal distribution. The label on each bottle states that it contains 500 ml of juice. Suppose that a random sample of 50 bottles of juice is selected from the production and the volume of juice in each is measured. Based on these 50 observations, the resulting 95% confidence interval for the mean volume is (491, 497) ml. (a) (2 marks) Would a 90% confidence interval calculated from this same sample have been narrower or wider than the given interval? Explain. Narrower. It is less likely to capture the true mean. (b) (2 marks) Consider the following statement: We can be highly confident that 95% of all bottles of this type of apple juice have a volume of juice that is between 491 and 497 ml. Is this statement correct? Why or why not? No. The confidence interval is for the mean not for measurements for individual bottles. (c) (2 marks) Suppose that the label on the bottles purports to reflect the mean of the volume of juice in the bottles produced in this factory. Based on the observed confidence interval, is the label correct in stating that the mean is 500 ml? Explain. It might be correct. 5% of all samples result in 95% confidence intervals that miss the mean and this might be one of those. (d) (3 marks) Suppose that legally the bottling machines must be adjusted so that the standard deviation of the amount of juice in the bottles is at most 2 ml. Does it appear that this criterion is being met? Why or why not? t.025,49 = ( ) The half-width of the confidence interval is 3 = s 50 which gives s = Since this is so much larger than 2 it appears that the criterion is not being met. 8

9 6. Let X 1, X 2,..., X n be a random sample from a uniform distribution on the interval [0, θ] so that { 1 f(x) = θ 0 x θ 0 otherwise Then if Y = max(x i ), U = Y/θ has density function We are interested in estimating θ. f U (u) = { nu n 1 0 u 1 0 otherwise (a) (2 marks) Explain why Y θ is a good pivot. It is a function of the data (the maximum observation) and the unknown parameter (θ) and its probability distribution does not depend on any unknown parameters. (b) (2 marks) Using f U (u) it can be shown that P [(α/2) 1/n < Y ] θ (1 α/2)1/n = 1 α Use this to derive a 99% confidence interval for θ. For a 99% confidence interval, α =.01 so we have P ((.005) 1/n Y ) θ (.995)1/n = 1 α Rearranging what s inside the brackets for θ gives Y (.995) 1/n θ Y (.005) 1/n so the confidence interval for data x 1,..., x n is ( max(x1,..., x n ) (.995) 1/n, max(x ) 1,..., x n ) (.005) 1/n 9

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL - MAY 2005 EXAMINATIONS STA 248 H1S. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL - MAY 2005 EXAMINATIONS STA 248 H1S. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL - MAY 2005 EXAMINATIONS STA 248 H1S Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 17 pages including

More information

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments STAT 135 Lab 3 Asymptotic MLE and the Method of Moments Rebecca Barter February 9, 2015 Maximum likelihood estimation (a reminder) Maximum likelihood estimation Suppose that we have a sample, X 1, X 2,...,

More information

7.1 Basic Properties of Confidence Intervals

7.1 Basic Properties of Confidence Intervals 7.1 Basic Properties of Confidence Intervals What s Missing in a Point Just a single estimate What we need: how reliable it is Estimate? No idea how reliable this estimate is some measure of the variability

More information

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009 EAMINERS REPORT & SOLUTIONS STATISTICS (MATH 400) May-June 2009 Examiners Report A. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong one. Generally candidates

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean Interval estimation October 3, 2018 STAT 151 Class 7 Slide 1 Pandemic data Treatment outcome, X, from n = 100 patients in a pandemic: 1 = recovered and 0 = not recovered 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

More information

STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method

STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method Rebecca Barter February 2, 2015 Confidence Intervals Confidence intervals What is a confidence interval? A confidence interval is calculated

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2013 MODULE 5 : Further probability and inference Time allowed: One and a half hours Candidates should answer THREE questions.

More information

MIT Spring 2015

MIT Spring 2015 MIT 18.443 Dr. Kempthorne Spring 2015 MIT 18.443 1 Outline 1 MIT 18.443 2 Batches of data: single or multiple x 1, x 2,..., x n y 1, y 2,..., y m w 1, w 2,..., w l etc. Graphical displays Summary statistics:

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 1 The General Bootstrap This is a computer-intensive resampling algorithm for estimating the empirical

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

STAT100 Elementary Statistics and Probability

STAT100 Elementary Statistics and Probability STAT100 Elementary Statistics and Probability Exam, Sample Test, Summer 014 Solution Show all work clearly and in order, and circle your final answers. Justify your answers algebraically whenever possible.

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Business Statistics: A Decision-Making Approach 6 th Edition. Chapter Goals

Business Statistics: A Decision-Making Approach 6 th Edition. Chapter Goals Chapter 6 Student Lecture Notes 6-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 6 Introduction to Sampling Distributions Chap 6-1 Chapter Goals To use information from the sample

More information

Notes on the Multivariate Normal and Related Topics

Notes on the Multivariate Normal and Related Topics Version: July 10, 2013 Notes on the Multivariate Normal and Related Topics Let me refresh your memory about the distinctions between population and sample; parameters and statistics; population distributions

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Statistics 135 Fall 2007 Midterm Exam

Statistics 135 Fall 2007 Midterm Exam Name: Student ID Number: Statistics 135 Fall 007 Midterm Exam Ignore the finite population correction in all relevant problems. The exam is closed book, but some possibly useful facts about probability

More information

Lecture 8 Sampling Theory

Lecture 8 Sampling Theory Lecture 8 Sampling Theory Thais Paiva STA 111 - Summer 2013 Term II July 11, 2013 1 / 25 Thais Paiva STA 111 - Summer 2013 Term II Lecture 8, 07/11/2013 Lecture Plan 1 Sampling Distributions 2 Law of Large

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 2004

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 2004 EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 004 Paper I : Statistical Theory Time Allowed: Three Hours

More information

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Statistics S1 Advanced/Advanced Subsidiary Candidate Number Friday 20 January 2017 Afternoon Time: 1

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

CH.8 Statistical Intervals for a Single Sample

CH.8 Statistical Intervals for a Single Sample CH.8 Statistical Intervals for a Single Sample Introduction Confidence interval on the mean of a normal distribution, variance known Confidence interval on the mean of a normal distribution, variance unknown

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Mathematics 47: Lecture 9 Dan Sloughter Furman University March 16, 2006 Dan Sloughter (Furman University) Sampling Distributions March 16, 2006 1 / 10 Definition We call the probability

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

STAT FINAL EXAM

STAT FINAL EXAM STAT101 2013 FINAL EXAM This exam is 2 hours long. It is closed book but you can use an A-4 size cheat sheet. There are 10 questions. Questions are not of equal weight. You may need a calculator for some

More information

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

One-Sample Numerical Data

One-Sample Numerical Data One-Sample Numerical Data quantiles, boxplot, histogram, bootstrap confidence intervals, goodness-of-fit tests University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution Lecture 12: Small Sample Intervals Based on a Normal Population MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 24 In this lecture, we will discuss (i)

More information

Statistics II Lesson 1. Inference on one population. Year 2009/10

Statistics II Lesson 1. Inference on one population. Year 2009/10 Statistics II Lesson 1. Inference on one population Year 2009/10 Lesson 1. Inference on one population Contents Introduction to inference Point estimators The estimation of the mean and variance Estimating

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Statistics S1 Advanced/Advanced Subsidiary Candidate Number Thursday 15 January 2015 Afternoon Time:

More information

Problem 1 (20) Log-normal. f(x) Cauchy

Problem 1 (20) Log-normal. f(x) Cauchy ORF 245. Rigollet Date: 11/21/2008 Problem 1 (20) f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 4 2 0 2 4 Normal (with mean -1) 4 2 0 2 4 Negative-exponential x x f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.5

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Statistics S1 Advanced/Advanced Subsidiary Candidate Number Wednesday 15 June 2016 Morning Time: 1 hour

More information

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Statistics S1 Advanced/Advanced Subsidiary Candidate Number Wednesday 15 June 2016 Morning Time: 1 hour

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Chapter 6: Large Random Samples Sections

Chapter 6: Large Random Samples Sections Chapter 6: Large Random Samples Sections 6.1: Introduction 6.2: The Law of Large Numbers Skip p. 356-358 Skip p. 366-368 Skip 6.4: The correction for continuity Remember: The Midterm is October 25th in

More information

Economics 573 Problem Set 4 Fall 2002 Due: 20 September

Economics 573 Problem Set 4 Fall 2002 Due: 20 September Economics 573 Problem Set 4 Fall 2002 Due: 20 September 1. Ten students selected at random have the following "final averages" in physics and economics. Students 1 2 3 4 5 6 7 8 9 10 Physics 66 70 50 80

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

ECON 4130 Supplementary Exercises 1-4

ECON 4130 Supplementary Exercises 1-4 HG Set. 0 ECON 430 Sulementary Exercises - 4 Exercise Quantiles (ercentiles). Let X be a continuous random variable (rv.) with df f( x ) and cdf F( x ). For 0< < we define -th quantile (or 00-th ercentile),

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

MIT Arts, Commerce and Science College, Alandi, Pune DEPARTMENT OF STATISTICS. Question Bank. Statistical Methods-I

MIT Arts, Commerce and Science College, Alandi, Pune DEPARTMENT OF STATISTICS. Question Bank. Statistical Methods-I Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 MIT Arts, Commerce and Science College, Alandi, Pune DEPARTMENT OF STATISTICS Question Bank Statistical Methods-I Questions for 2 marks Define the following terms: a. Class limits

More information

STAT440/840: Statistical Computing

STAT440/840: Statistical Computing First Prev Next Last STAT440/840: Statistical Computing Paul Marriott pmarriott@math.uwaterloo.ca MC 6096 February 2, 2005 Page 1 of 41 First Prev Next Last Page 2 of 41 Chapter 3: Data resampling: the

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Loglikelihood and Confidence Intervals

Loglikelihood and Confidence Intervals Stat 504, Lecture 2 1 Loglikelihood and Confidence Intervals The loglikelihood function is defined to be the natural logarithm of the likelihood function, l(θ ; x) = log L(θ ; x). For a variety of reasons,

More information

6 The normal distribution, the central limit theorem and random samples

6 The normal distribution, the central limit theorem and random samples 6 The normal distribution, the central limit theorem and random samples 6.1 The normal distribution We mentioned the normal (or Gaussian) distribution in Chapter 4. It has density f X (x) = 1 σ 1 2π e

More information

Advanced Statistics I : Gaussian Linear Model (and beyond)

Advanced Statistics I : Gaussian Linear Model (and beyond) Advanced Statistics I : Gaussian Linear Model (and beyond) Aurélien Garivier CNRS / Telecom ParisTech Centrale Outline One and Two-Sample Statistics Linear Gaussian Model Model Reduction and model Selection

More information

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 Lecture 2: Linear Models Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf Lecture 13: 2011 Bootstrap ) R n x n, θ P)) = τ n ˆθn θ P) Example: ˆθn = X n, τ n = n, θ = EX = µ P) ˆθ = min X n, τ n = n, θ P) = sup{x : F x) 0} ) Define: J n P), the distribution of τ n ˆθ n θ P) under

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium November 12, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

More information

STA 2101/442 Assignment 3 1

STA 2101/442 Assignment 3 1 STA 2101/442 Assignment 3 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. Suppose X 1,..., X n are a random sample from a distribution with mean µ and variance

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics School of Mathematics and Statistics, University of Sheffield 2018 19 Identically distributed Suppose we have n random variables X 1, X 2,..., X n. Identically

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 8, 2008 Liang Zhang (UofU) Applied Statistics I July 8, 2008 1 / 15 Distribution for Sample Mean Liang Zhang (UofU) Applied

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

Chapter 2: Resampling Maarten Jansen

Chapter 2: Resampling Maarten Jansen Chapter 2: Resampling Maarten Jansen Randomization tests Randomized experiment random assignment of sample subjects to groups Example: medical experiment with control group n 1 subjects for true medicine,

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Lecture 28: Asymptotic confidence sets

Lecture 28: Asymptotic confidence sets Lecture 28: Asymptotic confidence sets 1 α asymptotic confidence sets Similar to testing hypotheses, in many situations it is difficult to find a confidence set with a given confidence coefficient or level

More information

Chapter 8 - Statistical intervals for a single sample

Chapter 8 - Statistical intervals for a single sample Chapter 8 - Statistical intervals for a single sample 8-1 Introduction In statistics, no quantity estimated from data is known for certain. All estimated quantities have probability distributions of their

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

Overall Plan of Simulation and Modeling I. Chapters

Overall Plan of Simulation and Modeling I. Chapters Overall Plan of Simulation and Modeling I Chapters Introduction to Simulation Discrete Simulation Analytical Modeling Modeling Paradigms Input Modeling Random Number Generation Output Analysis Continuous

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

Continuous Distributions

Continuous Distributions Chapter 3 Continuous Distributions 3.1 Continuous-Type Data In Chapter 2, we discuss random variables whose space S contains a countable number of outcomes (i.e. of discrete type). In Chapter 3, we study

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses*

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Amy G. Froelich Michael D. Larsen Iowa State University *The work presented in this talk was partially supported by

More information

Empirical likelihood-based methods for the difference of two trimmed means

Empirical likelihood-based methods for the difference of two trimmed means Empirical likelihood-based methods for the difference of two trimmed means 24.09.2012. Latvijas Universitate Contents 1 Introduction 2 Trimmed mean 3 Empirical likelihood 4 Empirical likelihood for the

More information

Space Telescope Science Institute statistics mini-course. October Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses

Space Telescope Science Institute statistics mini-course. October Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses Space Telescope Science Institute statistics mini-course October 2011 Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses James L Rosenberger Acknowledgements: Donald Richards, William

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Section 3. Measures of Variation

Section 3. Measures of Variation Section 3 Measures of Variation Range Range = (maximum value) (minimum value) It is very sensitive to extreme values; therefore not as useful as other measures of variation. Sample Standard Deviation The

More information

2017 Financial Mathematics Orientation - Statistics

2017 Financial Mathematics Orientation - Statistics 2017 Financial Mathematics Orientation - Statistics Written by Long Wang Edited by Joshua Agterberg August 21, 2018 Contents 1 Preliminaries 5 1.1 Samples and Population............................. 5

More information

Statistical Inference

Statistical Inference Statistical Inference Serik Sagitov, Chalmers University of Technology and Gothenburg University Abstract This text is a compendium for the undergraduate course on course MVE155 Statistical Inference worth

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Midterm #1. Lecture 10: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example, cont. Joint Distributions - Example

Midterm #1. Lecture 10: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example, cont. Joint Distributions - Example Midterm #1 Midterm 1 Lecture 10: and the Law of Large Numbers Statistics 104 Colin Rundel February 0, 01 Exam will be passed back at the end of class Exam was hard, on the whole the class did well: Mean:

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Output Analysis for Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Output Analysis

More information

Paper Reference. Statistics S2 Advanced/Advanced Subsidiary. Monday 11 June 2007 Afternoon Time: 1 hour 30 minutes

Paper Reference. Statistics S2 Advanced/Advanced Subsidiary. Monday 11 June 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6684/01 Edexcel GCE Statistics S2 Advanced/Advanced Subsidiary Monday 11 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

More information